连续学习 Continual Learning
Scenarios for continual learning
- Three scenarios for continual learning: https://arxiv.org/pdf/1904.07734.pdf
Strategies for Continual Learning
-
Task-specific Components
连续学习过程中,在模型上选出特定的子网络(Sub-network)去应对特定的任务,从而抑制灾难性遗忘。这种策略仅限于Task-IL连续学习场景下,也就是说必须明确任务标识(Task Identity)才能正确候选特定的子网络(Sub-network)。
- Context-dependent Gating, XdG
- Hard Attention To the Task, HAT: http://proceedings.mlr.press/v80/serra18a/serra18a.pdf
-
Regularized Optimization
在训练新的任务时,为了防止对之前任务的灾难性遗忘,限制神经网络上某些权重的更新弹性。这种策略适用于测试过程中任务标识不明确的场景下。
- Elastic Weight Consolidation, EWC: https://arxiv.org/abs/1612.00796
- Synaptic Intelligence, SI: https://arxiv.org/abs/1703.04200
- Memory Aware Synapses, MAS: https://arxiv.org/abs/1711.09601
- RWalk: https://arxiv.org/abs/1801.10112
- Sliced Cramer Preservation, SCP: https://openreview.net/forum?id=BJge3TNKwH
-
Modifying Training Data
- Learning without Forgetting, LwF:
- Deep Generative Replay, DGR:
-
Using Exemplars
- iCaRL